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10.1.	 
Introduction to coupled prediction
In the early days of numerical modelling of the various com-
ponents of the Earth system, each component was treated 
individually. Figure 10.1 shows a representation of two sys-
tems, ocean and atmosphere, that run independently: the 
output of one system is used to “force” the other. The inter-
face between the ocean and the atmosphere was considered 
a phenomenon that had to be modelled independently of 
the two media. 

This representation of the Earth system interactions is in 
some sense arbitrary. As the complexity of models grew, at-
tempts were made to integrate the components more tight-
ly, particularly in the field of climate modelling. Weather 
forecasting has a time scale of days to a couple of weeks 
(Lorenz, 1967) and, as new forecasts would be initialised reg-
ularly (typically every day), excessive diffusivity was never 
considered a problem. Making the early numerical weather 
prediction models conservative was therefore not a priority. 
The problem of conserving quantities such as heat, moisture, 
or momentum to avoid model drift, began to manifest itself 
only with the advent of long integrations of climate mod-
els. It became clear that long climate integrations of the at-
mosphere needed to also consider the impact of a (slowly) 
changing ocean, not least because the various climate com-
ponents interact in nonlinear ways. This produces feedback 
loops that can fundamentally alter the state of each climate 
component. Numerical weather prediction models also need-

ed to close the energy budget at the top of the atmosphere 
(or in the case of climate change, get that imbalance right). 
This led to the first attempts at coupling ocean and atmo-
sphere models. The ice floating on the ocean and the soil in 
the ground were also separate from the ocean and the atmo-
sphere. The latter was the first to be incorporated into more 
complex models, leading to the first coupled models. 

Figure 10.2 shows a conceptual representation of systems 
that can interact through a “mechanism” called coupler. Fig-
ure 10.3 shows a more detailed and realistic representation 
of this coupling process.

Theoretical challenges to producing skilful weather forecasts 
were noted early in the history of NWP. For example, Lorenz 
(1963) pointed to the phenomenon of sensitive dependence 
on initial conditions. This means that small changes in our 
current best guess of the atmosphere or ocean could lead to 
very large changes in the forecasts. As a consequence, skillful 
weather prediction is limited to a finite time horizon of around 
1-2 weeks. However, this perspective tends to focus on syn-
optic scale atmospheric dynamics. When a numerical mod-
el of the atmosphere is coupled to numerical models of the 
ocean and other Earth system components, new timescales 
are introduced into the system. In such multiscale systems, 

Figure 10.1.	 Traditional modelling platform 
characterised by Systems (S), like ocean model 
and atmosphere model, and inputs to each  
System (V).

Figure 10.2.	 Coupling modelling platform where 
Systems (S) communicate with each other through 
an interface code called “coupler”. 
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fast growing errors tend to be associated with processes 
that evolve quickly but saturate at smaller scales (Harlim 
et al., 2005), while slower growing or decaying errors tend 
to be associated with larger scale oscillations (Penland and 
Sardeshmukh, 1995; Penland and Matrosova, 1998; Vannit-
sem and Duan, 2020).

DA is the process of integrating information from numerical 
models with observations derived from real world measure-
ments. At operational centres, DA systems have typically been 
built for each Earth system component independently. Early 
efforts to produce coupled forecasts maintained this separa-
tion of components when applying DA to provide initial con-
ditions (Saha et al., 2006, 2010, and 2014; Zhang et al., 2007), 
an approach that is now called WCDA. More recently, there 
have been efforts to treat the entire coupled Earth system 
as one state and update accordingly. This more integrated 
approach allows observations to have immediate influence 
across domain boundaries (e.g. the air-sea interface), and 
as such is called SCDA. There are also approaches that fall 
on the spectrum between these extremes, such as the CERA 
system at the ECMWF that applies different DA systems to the 

atmosphere and ocean but still allows influence across the 
air-sea interface via an iterative cycling over a moving 6-12 
hour time window (Laloyaux et al., 2018).

Beyond these theoretical considerations, there are many 
technical complications involved in transitioning to coupled 
prediction. Many centres have developed monitoring and 
prediction tools independently for individual Earth com-
ponents (e.g. atmosphere, ocean, land, waves, etc.). This is 
natural based on the historical context of their development 
and limitations on computing capabilities, but it has creat-
ed an infrastructure within and across institutions that adds 
complexity to the task of unifying prediction systems. The 
major prediction centres are making progress towards an 
integrated approach by unifying software infrastructure for 
models and data assimilation capabilities, as well as pro-
viding opportunities to increase interactions among the de-
velopment teams of each system component. Data formats 
for model output and observational data sets have not been 
fully standardised across the various Earth system domains, 
and so this adds further steps before seamless integration. 

Figure 10.3.	 A schematic of the components (ocean, waves, etc.), the models (NEMO, WWIII, etc.), and the 
coupling exchanges between them, based on the system described in Lewis et al. (2019). Note the use of the 
coupler OASIS, the use of input forcing between Jules and the river flow model, direct coupling between Jules 
and the UM and direct forcing between the NEMO and ERSEM systems. A relatively simple coupled system (no 
ice) that includes 6 different models and 4 different approaches to coupling between them.

CHAPTER 10. COUPLED PREDICTION: INTEGRATING ATMOSPHERE-WAVE-OCEAN FORECASTING 310



A very important practical limitation that has most certainly 
curtailed research and development in coupled prediction is 
the extreme demands it places on computational resources. 
The best performing applications for atmospheric predic-
tion and ocean prediction have already been pushed to their 
limits of resource consumption. Acknowledging the fact that 
coupled systems can perform very differently at low resolu-

tions versus high resolutions, there remain very few organ-
isations with the resources needed to explore unanswered 
questions in coupled prediction at relevant resolutions for 
operational prediction. For this reason, there are efforts 
underway to identify methods to reduce the computational 
demands at bottlenecks within the cycled data assimilation 
and forecast systems.

10.2.	 
Coupling processes
10.2.1.	Waves and their role in air-sea exchange

Waves have been called the gearbox of the climate system 
(Semedo et al., 2011). The analogy highlights the mediating 
role of the wave field between the atmosphere and the ocean 
interior. It may seem surprising that the sea surface demands 
its own class of numerical model. The other components (at-
mosphere, ocean, sea ice, land surface) have real substance, 
i.e. they each represent a three-dimensional chunk of the 
Earth system. In contrast, the wave model is a representation 
of a surface between two media, namely the air and the sea 
(Figure 10.4). There are, however, good practical reasons for 
this split. If we had access to unlimited computing power, 
we could model the ocean and the atmosphere with a grid 
resolution approaching Kolmogorov’s microscale. That would 
mean that the Navier Stokes equations could be solved in 
the approximative limit known as DNS (Moin and Mahesh, 

1998). In this case, the (liquid) ocean would presumably in-
teract with the (gaseous) atmosphere and on their interface 
would form a wavy surface that, given a sufficiently strong 
momentum flux (mostly from the atmosphere to the ocean), 
would form droplets and bubbles as the waves start to break. 
The computational reality is far from this. At present, we can 
model the ocean and the atmosphere with models that have 
grid cells of tens of metres in the horizontal if we limit our-
selves to small domains, whereas the waves that form under 
the influence of the wind have wavelengths of the order of 
some metres to hundreds of metres and so cannot be explic-
itly resolved together with the bulk ocean properties.

The behaviour of these waves determines the mass and mo-
mentum fluxes between the ocean and the atmosphere. As 
waves grow under the influence of the wind, they become 
steeper. In this phase they are also choppier than they will 

Figure 10.4.	 Representation of AWO coupled models.
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be later on. All this means that the momentum flux between 
the atmosphere and the ocean is affected by the presence 
of waves (Janssen et al., 2004; Breivik et al., 2015). There is 
also very important feedback between the waves and the at-
mosphere. As waves grow, the sea surface becomes rougher, 
slowing the near-surface winds and increasing the momen-
tum flux from the atmosphere to the wave field. This has the 
effect of stemming the deepening of low-pressure systems. 
This is important in the formation and growth of extratropi-
cal lows (Janssen, 1991 and 2004), but also in the evolution of 
tropical cyclones (discussed further below).

A secondary effect of waves on the air-sea interaction is 
through their ability to impart momentum and turbulent ki-
netic energy to the ocean interior (Figure 10.4). As waves grow, 
they absorb momentum that would otherwise go directly to 
the formation of ocean currents. As waves break, they part 
with this momentum, and also inject turbulent kinetic en-
ergy into the ocean (Janssen et al., 2004; Rascle et al., 2006; 
Ardhuin et al., 2008 and 2009). This leads to a redistribution 
of momentum and kinetic energy in time and space (Ardhuin 
and Jenkins, 2006; Breivik et al., 2015; Staneva et al., 2017; 
Wu et al., 2019), and has a profound effect on near-shore 
processes (Uchiyama et al., 2010; Kumar et al., 2012) where 
waves interact strongly with the currents. It is also clear that 
in open ocean conditions the mixed-layer depth is a function 
of the wave activity, in part sustained by the Langmuir turbu-
lence (McWilliams et al., 1997; Fan and Griffies, 2014; Li et al., 
2016 and 2017; Li and Fox-Kemper, 2017; Ali et al., 2019). The 
enhanced mixing due to waves is thus important for the sea 
surface temperature, which helps to determine the air-sea 
heat flux and thus constitutes an important feedback mech-
anism between the atmosphere and the ocean.

10.2.2.	 Land/sea exchanges

Land-sea interactions take place on a wide range of spa-
tial and temporal scales. The presence of land modifies the 
weather in the coastal zone, e.g. the daily variations in wind 
speed and direction due to the sea breeze, and hence the 
atmosphere provides an indirect link between the land and 
the ocean. Another example of this indirect coupling is the 
way large-scale weather systems can influence the transport 
pathways of river water (Osadchiev et al., 2020). 

The physical couplings between land, ocean, and atmo-
sphere are not necessarily equal in strength and importance, 
and we often observed a lagged response. The runoff from 
rivers is dependent on the precipitation over a potentially 
very large catchment area, with significant lag between spe-
cific precipitation events and the freshwater discharge to the 
coastal ocean. This lag is particularly pronounced in temper-
ate and polar regions where the precipitation accumulates 
as snow during parts of the year. This is reflected by the 

state-of-the-art of coupled modelling, as very few systems 
couple the ocean to the land, but rather use the atmosphere 
as a mediator.

10.2.3.	 Air-sea exchanges across sea ice

At high latitudes, air-sea exchange is modified by the pres-
ence of sea ice. Varying in thickness up to a couple of metres, 
sea ice is sensitive to forcing from both air and sea and the 
air, sea, and sea ice are strongly coupled. Geophysical scale 
sea ice is essentially a mixture of ice floes of varying size 
and thickness, with the added complexity of being rafted 
and ridged. Describing accurately the sea ice mechanical be-
haviour is extremely challenging, although modelling sea ice 
as plastic materials at the large scale has long been a suc-
cessful approach (Coon et al., 1974; Hibler, 1979; Hunke and 
Dukwicz, 1997; Girard et al., 2011). In medium to high model 
resolutions (≤ 10km), such models can generate small-scale 
features such as the ice leads (Hutchings et al., 2005; Wang 
and Wang, 2009; Girard et al., 2011; Spreen et al., 2017). This 
thin ice cover has a very small heat content and easily melts 
away during summer, resulting in large seasonal variations 
of sea ice extent.

In much of the pack ice region, the thermodynamic and dy-
namic interactions between air and sea are greatly sup-
pressed. During wintertime, the air-sea heat flux through leads 
is two orders of magnitude larger than that through thick ice 
(Maykut, 1978). Dynamically, pack ice behaves as a low-pass 
filter, the air and sea surface stresses act on the ice cover thus 
driving the advection and deformation of sea ice, while ocean 
waves are generally suppressed. The MIZ is a highly com-
plex region consisting of ice floes of varying dimensions and 
shapes. Wave energy propagating into the MIZ can lead to rap-
id breakup. The damping of waves in sea ice is directly related 
to the amount of energy imparted on the sea ice. This is a field 
of active research, and it is presently not fully clear how the 
MIZ attenuates wave energy (Doble and Bidlot, 2013; Williams 
et al., 2013; Kohout et al., 2014; Sutherland and Rabault, 2016; 
Ardhuin et al., 2016; Rabault et al., 2020). 

Landfast ice is a special region where the air-sea interaction 
nearly ceases. It generally appears in winter seasons and often 
occurs in shallow waters where ridged ice grounds on the sea-
bed (Mahoney et al., 2014), or occurs where islands are close to 
each other (Divine et al., 2003). Modelling studies have shown 
that adding base stress due to grounding ridges and increas-
ing ice tensile strength improve the simulation of landfast ice 
evolution (Lemieux et al., 2016), although in some Arctic shelf 
seas the time duration needs to be further improved.

In coupled modelling, a key consideration is whether to cou-
ple the sea ice directly to the atmosphere or only through the 
ocean model. In some recent coupled models, particularly 
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for high-resolution short-term atmosphere, ocean, and sea 
ice forecasts, the timestep for coupling has decreased to one 
hour or less, e.g. the coupled ocean-ice model METROMS at 
the Norwegian Meteorological Institute (Naughten et al., 2018), 
or the atmosphere-ice coupled model at UKMO (Ridley et al., 
2018). In these cases, the difference between using the atmo-
sphere timestep or ocean timestep is generally negligible. 

10.2.4.	 The importance of air-sea exchanges 
during storms and other extreme events

Air-sea exchange really comes to the fore in the develop-
ment of tropical cyclones. The sea surface temperature must 
as a general rule exceed 26.5ºC to sustain the growth of the 
cyclone (Emanuel, 1986). However, the depth to which the 
ocean’s temperature must be above this critical threshold 
is also important. As the cyclone moves across the sea sur-
face, the Ekman transport will lead to divergence, and verti-
cal Ekman pumping will eventually lead cooler water to the 
surface. If the cyclone is moving sufficiently slowly, this will 
eventually kill the cyclone (Mogensen et al, 2017). Thus, it 
is essential to include an ocean model component that re-
sponds to the atmospheric forcing.

The importance of coupled ocean-atmosphere prediction 
systems in providing seasonal predictability is well-known 
(Kim et al., 2012, and references therein). Sources of predict-
ability in seasonal forecasting systems tend to be, by their 
very nature, coupled systems driven by teleconnections 
that are functions of climate modes, such as the North At-
lantic Oscillation and the El Niño–Southern Oscillation that 
have geographically far-reaching consequences. However, 
as timescales shorten and the dominance of these coupled 
climate modes become less fundamental to predictability 
of the atmosphere-ocean system, it becomes less obvious 
whether the benefits of fully coupled systems justify the 
computational cost or the technical and scientific complexity 
required. The coupling between atmospheric and wind wave 
models was first introduced operationally in 1998 at ECM-
WF. The method based on the theoretical work of Janssen 
(1991) contributed to an improvement of both atmospher-
ic and surface wave forecasts at the medium range on the 
global scale. The usual approach of forcing the ocean with 
atmospheric conditions (Takano et al., 1973), and referred to 
in this section as “forced”) using bulk parameterisations of 

Polar lows are of a decidedly less extreme nature than trop-
ical cyclones, but they share the same dependence on sea 
surface temperature (Rasmussen and Turner, 2003). As winds 
blow off the sea ice, the air is rapidly warmed by the (relative-
ly) warm ocean surface. Under the appropriate atmospheric 
conditions (Kolstad, 2015), this can lead to the formation of 
polar lows. These are small-scale, intense cyclones, typically 
with gale-force winds. If the cyclone is rather stationary, a 
shallow layer of warmer water can mix with cooler waters 
through Ekman pumping. As the ocean temperature is key 
to sustaining a cyclone, the water mixing can sometimes be 
enough to inhibit further growth of the polar low.  

Examples of instantaneous coupling between land, ocean, 
and atmosphere also include coastal inundation during 
landfall of tropical cyclones (Lee et al., 2019). In these cases, 
heavy precipitation leads to a swelling of local rivers, which 
is often coincidental with a large storm surge. The result is 
a rapid sea-level rise that may cause extensive damage to 
coastal infrastructure, especially when combined with large 
surface waves and strong winds.

the fluxes (Large and Yeager, 2009) is computationally and 
structurally far easier and cheaper than coupling approach-
es. However, the key boundary layer processes (see Section 
9.1 for details) are not taken into account and thus the feed-
back between the atmospheric boundary layer and the up-
per ocean is not represented. It is necessary to understand 
how important these processes might be, bearing in mind 
that coupled models can suffer from systematic errors as a 
result of positive feedback leading to drifts in the forecast 
(Hyder et al., 2018). 

Ocean forecasting systems have become increasingly 
high-resolution, resolving coastlines, bathymetry, and ed-
dy-scale processes. The effect of coupling on model predic-
tions becomes more important with increasing grid resolu-
tion (Janssen et al., 2004), and so the question of the benefits 
of coupling to ocean forecasting is perhaps more relevant 
now than ever. A small but growing body of literature demon-
strates the benefits to ocean prediction of coupling at short-
er time-ranges (Brassington et al, 2015; Allard et al., 2010; 
Lewis et al., 2018 and 2019).

10.3.	 
Benefits expected from coupling
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Understanding the advantages of coupled over uncoupled 
predictions in short-range ocean forecasting is in its infancy. 
Although the future of advanced systems is clearly coupling, 
as several processes are better represented, predictive mod-
elling without coupling is however possible thanks to param-
eterizations and should never be discarded as an option. At 
a recent science meeting of OceanPredict (Vinayachandran 
et al., 2020), the need for a careful evaluation of how ocean 
and atmosphere components interact and impact each oth-
er was highlighted. At monthly or shorter timescales, the 
benefits of running coupled systems need to be evaluated, 
balancing scientific and service benefits against complexity 
and computing costs. Intermediate complexity coupling may 
also be an appropriate approach if full coupling is not viable 
and the service is not reliant on the atmosphere and ocean 
information. Lemarié et al. (2021) provided an example of an 
atmospheric boundary layer approach that gives some of the 
benefits of coupling whilst being significantly simpler and 
computationally cheaper.

The potential benefits of using a coupled framework is rein-
forced by the move towards a multi-hazard approach to pre-
dictions. Natural hazards from multiple sources may combine 
or occur concurrently (Lewis et al., 2015). Large waves, storm 
surges, high-wind speeds, and extreme precipitation are all 
hazards that are likely to co-occur, and influence each other 
through coupled feedbacks that can compound one another 
(for example through over-topping). Coupled systems that 
predict these coupled feedbacks may enable an improve-
ment in the range and consistency of actionable information 
to be provided through hazard warnings and guidance.

When considering providing services in multi-hazards frame-
works, the opportunities that coupling provides should be 
considered alongside the scientific benefits. A coupled system 
combining the full water-cycle – including consistent precipi-
tation, river runoff, wave, currents, and surge forecasts - can 
give users mutually consistent products in a joint probability 
framework. This can be important in coastal flooding, where 
the impacts for coastal communities or industries can come 
from high river flows and local heavy precipitation events, 
alongside overtopping waves and extreme surges. From a 
service perspective, it is attractive to provide probabilistic 
frameworks in which the timings and intensities of events 
are consistently incorporated and interact appropriately; 
these services increasingly rely on probabilistic information 
for decision making. An area that has had limited attention 
but seems likely to prove significant is the impact of feedback 
among Earth-system components upon ensemble spread, and 
hence the quality of the probabilistic information. 

Ocean phenomena are usefully classified depending on their 
nature, which determines the timescale for oceanic predic-
tive skill and whether a coupled ocean-atmosphere model 
would be advantageous. Some phenomena have strong de-

pendence, and a rapid response, to the atmosphere forcing 
and can be thought of as forced-dissipative systems. This cat-
egory includes, surface waves, responses to surface heating 
and wind in the ocean boundary layer, and storm surges. These 
systems largely depend upon skill in the atmosphere model, 
and so the benefits of coupling to the atmosphere can be a 
leading-order driver of the ocean system skill. The advantage 
of coupling and its impact upon predictability often focus on 
the benefits to the atmosphere (Brunet et al., 2010; Belcher et 
al., 2015). The impact of ocean coupling on tropical meteorolo-
gy is well documented with tropical cyclones (Bender and Gi-
nis 2000; Mogensen et al., 2017; Smith et al., 2018; Neetu et al., 
2019), monsoons (Fu, 2007), and the Madden–Julian Oscillation 
(Bernie et al., 2008; Shelly et al., 2014; Seo et al., 2014), which 
predictability improved in coupled systems. There is also an 
increasing body of evidence that the oceans have a significant 
local (important for short-range forecasts) and non-local (in-
creasingly significant at longer lead-times) influence on the 
extra tropics (Minobe et al., 2008). 

In the literature, there is limited quantification of the im-
pact of the coupled improvement in atmospheric parame-
ters on ocean services but it is an increasing area of study. 
Guiavarc’h et al. (2019) explored the impact of a coupled (at-
mosphere-ocean) system on short-range ocean forecast skill 
and showed that there are benefits in SST predictability at 
the short-range, but with mixed results for other parameters. 
Given that the research system they used is at a relatively 
early stage in development, and the resolution of the atmo-
sphere is significantly lower than in comparable forced sys-
tems, these results are encouraging.

Although the importance of coupling the wave-ocean interface 
for improving forecasts of surge and waves is well document-
ed (Wolf, 2008; Lewis et al., 2018), most storm surge and wave 
prediction systems remain largely independent. As well as the 
atmospheric forcing, ocean currents have a significant role 
in modifying ocean wave properties. The presence of eddies, 
fronts, and filaments with length scales of tens to hundreds 
km and ubiquitous in the world’s oceans, can be the main 
source of variability in significant wave heights at these scales. 
Ardhuin et al. (2017) made a compelling case for the impor-
tance of coupling the ocean surface currents to a wave model 
allowing adequate representation of wave height variability in 
the world’s open oceans. Wave predictions in shelf seas en-
vironments are shown to be improved as a result of coupling 
to an ocean model (Allard et al., 2012; Wahle et al., 2017; Lewis 
et al., 2018). as well as the predictions of ocean current and 
other ocean parameters, including upwelling due to stokes 
drift effects, were enhanced (Wu et al, 2019). Fan et al. (2009) 
showed that time and spatial variations in the surface wave 
field, as a result of coupling to winds, are particularly strong 
in hurricanes, with significant additional feedback from ocean 
currents and near-surface temperatures. 
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The ocean eddy kinetic energy is damped when taking into 
account the feedbacks between ocean surface current and 
winds (Oerder et al., 2018; Jullien et al., 2020). As ocean mod-
els increasingly resolve the mesoscale explicitly, they are 
likely to have the tendency to over-predict the eddy activi-
ty. In uncoupled systems, there is an option to calculate the 
wind stress using relative wind speeds (taking into account 
the eddies and other ocean current interactions). However, 
in these systems there is no imprint of ocean eddies on the 
atmospheric wind stress curl (due to the lack of ocean ed-
dies in the uncoupled atmospheric modelling system), and 
so the feedback onto the wind stress results in over-damp-
ing of the eddies. A fully coupled system will correctly allo-
cate the feedback between the winds and currents, allowing 
the eddy and wind fields to co-evolve correctly. This coupling 
between the winds and currents can also lead to upscaling 
to the large scale, e.g. Renault et al. (2016) showed that cur-
rent/wind feedback, through its eddy killing effect, resolves 
long-lasting biases in Gulf Stream path. 

Marine heatwaves have recently been recognised for their 
importance (Holbrook et al., 2019). They are high impact 
events that can be induced by anomalous heating at the 
ocean surface; their predictability is dependent upon air-
sea coupled phenomena (Jacox, 2019). At the other end of 
the temperature scale, Pellerin et al. (2004) showed that 

Over the past decades, operational oceanography underwent 
a rapid transition and gradually became part of core systems 
of operational centres previously largely focusing on weather. 
Sufficient observations are now available to improve the es-
timation of the ocean state, including mesoscale variability, 
ice cover, or wave spectra for wave systems. The development 
of weakly coupled data assimilation techniques, the explora-
tion of strongly coupled data assimilation using cross-domain 
error covariance (Sluka et al., 2016), the ability to assimilate 
an ever-growing source of observations, the improvements in 
physics and dynamics of the various components of the Earth 
system, and rapidly increasing computing capacities, keep 
pushing forward the quality of forecasts and reanalyses that 
can be produced. As a result, information available for prod-
ucts and services is continuously expanding and including a 
rapid increase in the quality and quantity of ocean and marine 
services. It is now well established that marine services are 
essential to any nation with coastal assets.

coupling can also have strong impacts in ice-infested seas 
even down to sub-daily time scales, due to rapid changes in 
coastal sea ice cover (i.e. the formation of coastal polynyas). 
The sea ice acts as a barrier between a relatively warm–wet 
ocean and cold–dry atmosphere, and changes in the sea ice 
cover can have dramatic effects on heat and moisture fluxes. 
The importance of coupling has also been recognized in po-
lar regions (Jung and Vitart, 2006).

Coastal regions are particularly impacted by coupled pro-
cesses, both between the ocean and atmosphere and cou-
pling with river and estuaries. The impact of freshwater dis-
charges on the ocean circulation is highlighted by Røed and 
Albretsen (2007) and, more broadly on the coastal marine en-
vironment, by Dzwonkowski et al., 2017. The inputs from the 
land surface, mediated through estuaries and lagoons, are 
generally poorly represented in ocean forecasting systems 
due to their scale (time and space) and their complexity. It is 
extremely difficult to accurately model nutrient inputs, which 
are mediated strongly by land use and societal factors, and 
the associated plankton response is therefore compound-
ed. Although this problem is not fundamentally a coupling 
problem, there is still scope for improving the inputs to the 
coastal environment through specifying better the river-es-
tuary-ocean interface. 

In the late 90s and early 2000s, operational marine ser-
vices were limited to a few marine weather variables such 
as waves, tides, and surges. With coupled systems now in 
place in many operational centres and the continuous push 
for increased resolution to better reflect local conditions, a 
wide variety of new services has and continues to emerge. 
It is now common for service providers to be overwhelmed 
with information drawn from many prediction systems, and 
for users to be submerged with products. In the next sub-
sections are discussed the few steps that should be fol-
lowed to sort through the very large number of products 
that can be generated numerically, so that services are cen-
tred on needs in a fit for purpose and accessible approach. 
A few simple examples are used to demonstrate ways of 
tying together all this numerical knowledge and provide 
forecasts and services that are informative and tailored to 
various groups of users. 

10.4.	 
Ocean Information Services based on Coupled Frameworks
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10.4.1.	 Establishing service needs

The first step when evaluating services’ needs, including 
whether to use or not a coupled or forced system, is to clear-
ly define the service gap and how current capacity can be 
leveraged to address it. The second step is to identify enough 
resources required to bring the project to completion. Nu-
merous capacities are required to sustain timely and accu-
rate services: i) reliable and sufficient computing resources 
including telecommunications, bandwidth, and storage, 
along with staff to operate and maintain the IT infrastruc-
ture; ii) physical scientist to install; optimise; run; validate, 
and verify numerical systems; iii) physical scientists to pro-
duce forecasts; iv) forecasters able to disseminate and ex-
plain forecasts; v) the ability to sustain such services through 
extreme conditions (e.g. during a powerful cyclone); and vi) 
the capacity to overcome throughout the years the changes 
in IT infrastructure, complexification of systems, increasing 
volumes of data, etc. However, it should never be forgotten 
that, whatever is the capacity and the complexity of a state-
of-the-art forecast, it only has value if it reaches the users in 
the due time.

For those countries that choose to operate regional systems 
driven with data provided by major operational centres, the 
capacity to download the required data quickly enough to 
run regional systems and issue timely regional forecasts is 
also key. It should be also ensured that sufficient local ex-
pertise is available to monitor, , and fix any issue with the 
regional system.

When launching new or improved forecast services, another 
important step is to identify user groups (e.g. marine engi-
neers, marine transportation industries, search and rescue 
operations, fisheries and aquaculture, coastal communities) 
and understand their needs. It should be also kept in mind 
that within each group there can be considerable modula-
tion of needs and that needs can evolve with time and hence 
they should be reviewed periodically. See section 4.8 for 
more details on user requirements. 

10.4.2.	 Identifying the required information

Search and rescue and coastal flooding cases are used to il-
lustrate how to select the modelling tools that are required 
to best address the problem. They are also used to demon-
strate how a fit for purpose approach may identify the nu-
merical systems best suited to deliver services.

A search and rescue incident that requires drift predictions 
is an example of a service to illustrate the choices needed. 
Forecasts of the trajectory of the drifting object requires 
knowledge of tides, eddies, inertial oscillations, winds, and 
waves. Such incidents often occur during high winds and 
large waves conditions and, as discussed in 9.1, it is under 

such conditions that interactions between tides, waves, 
ocean, and atmosphere are most important. This suggests 
that coupled predictions could add value (Davidson et al., 
2009) to the use of independent ocean, wave, and atmo-
sphere forecasting systems. As already discussed, ensembles 
are essential to sampling uncertainty in various components 
of a system. In their comprehensive review of the Deepwater 
Horizon oil spill event, Barker et al. (2020) made a case for 
the importance of coupled atmosphere-wave-ocean systems 
for effective oil spill response. All these considerations point 
to the use of ensemble coupled ocean-wave-atmosphere 
systems that are post-processed though tracking systems 
capable of considering the characteristics of various objects, 
such as a person in the water or a vessel at drift. However, 
the simulation overhead (in time and computer resources) of 
the coupled system needs to be balanced with the need to 
quickly run ensemble simulations to provide probabilities of 
the search zone to help optimise search patterns. A case sim-
ilar to that of search and rescue is the response to oil spill 
or tracking of nuclear debris, which also requires models to 
predict particulate dispersion but also need to consider oth-
er chemically induced processes, such as fate and behaviour.

Coastal flooding is the other example used here to illustrate 
how to select the best modelling tools. Local communities 
typically have precise questions such as: “How much water 
will there be and for how long?” “Will the water reach my 
street and my house?” “Will it damage my property?” “Will 
it erode my land or the cliff my house is perched on?” Local 
authorities and disaster management agencies might have 
further considerations such as: “What are the most likely 
and the worst-case scenarios?” “When should we consider 
evacuations and through what route?” “What critical infra-
structures might be at risk?” However, the nature of the ser-
vice will depend on local conditions. Consider for example 
a community living at high latitudes. In the event of a po-
lar low (discussed in 9.1), ice can recede rapidly to expose 
long stretches of ocean leaving the coastline exposed to 
large swells. In these areas, wave-ice interactions can lead 
to rapid changes and coupled ice-ocean-wave-atmosphere 
systems should be preferred to provide accurate forecasts of 
the low’s evolution, rapidly changing marine conditions, and 
to warn the coastal communities. On the other hand, loca-
tions exposed to tropical cyclones will need a system more 
focused on predicting ocean-atmosphere interactions in 
support of track and intensity prediction. However, the con-
cept of a forecast based on total water level at the coast re-
mains, although the fit for purpose numerical guidance to be 
used might have some differences. It is then particularly im-
portant to consider user orientated questions. User groups 
rarely care about technical issues, such as if the models are 
coupled or if the surge component is barotropic or baroclin-
ic. They care that scientists put forward the combination that 
best addresses their concerns. They want to receive a fit for 
purpose service. Simulations of tide, surge, wave, erosion, 
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hydrodynamic, and atmospheric may all be required, but to 
decide whether they should be coupled or not it is necessary 
to understand if this improves the specific predictions iden-
tified by the user questions outlined above.

Advanced knowledge of the risk of an upcoming event is 
useful to put in place mitigation measures. An outlook for 
several days to several weeks is of particular interest, as well 
as the early identification of upcoming risk for which ensem-
ble systems are relevant. At early stages, the focus should 
be on identifying risk and uncertainties, and communicating 
them in a clear manner. As the high impact event nears (e.g. 
next couple days), ensembles can be replaced with resolu-
tion increases, so that the risk forecast is changed into an 
impact-based forecast (i.e. damage to housing, risk of cars 
being swept away, risk of cutting off of an evacuation route, 
etc.). This should make the scientists understand that for 
the users the waves, surges, tides, and other phenomena are 
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to flooding, having a slightly better RMSD and thus a better 
representation of the mean state is useless if the total water 
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Finally, whether numerical systems are run locally or remote-
ly and whether all systems required to produce such fore-
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ing in the context a particular expected extreme, comparing 
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are the ultimate downscalers bringing added value based on 
local knowledge and history.
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